
Identifying Failure-Inducing Combinations Using

Tuple Relationship
Xintao Niu

#1
, Changhai Nie

#2
, Yu Lei

†3
, Alvin TS Chan

*4

#
 State Key Laboratory for Novel Software Technology, Nanjing University, China, 210093

1
niuxintao@gmail.com;

2
changhainie@nju.edu.cn

†
 Department of Computer Science and Engineering, the University of Texas at Arlington, USA

3
 ylei@cse.uta.edu

*
 Department of computing, Hong Kong Polytechnic University

4
 cstschan@comp.polyu.edu.hk

Abstract—Combinatorial testing (CT) aims at detecting

interaction failures between parameters in a system. Identifying

the failure-inducing combinations of a failing test configuration

can help developers find the cause of this failure. However, most

studies in CT focus on detecting the failures rather than

identifying failure-inducing combinations. In this paper, we

propose the notion of a tuple relationship tree (TRT) to describe

the relationships among all the candidate parameter interactions.

TRT reduces additional test configurations that need to be

generated in the fault localization process, and it also provides a

clear view of all possible candidate interactions. As a result, our

approach will not omit any possible interaction that could be the

cause of a failure. In particular, we can identify multiple failure-

inducing combinations that overlap with each other. Moreover,

we extend our approach to handle the case where additional

failure-inducing combinations may be introduced by newly

generated test configurations.

Index Terms—Combinatorial testing, Fault localization,

Tuple relationship tree, overlapping combinations, New import

combinations.

I. INTRODUCTION

The behavior of a software system may be influenced by

many factors, such as input parameters and configuration

options. Some interactions of these factors may cause failures

that may be difficult to track. One way to ensure software

correctness is to perform exhaustive testing of all combinations

of these factors. This is, however, not feasible when the

number of factors is large. Combinatorial testing (CT) is an

efficient testing method to deal with this problem [1]. It has

been shown to be effective at detecting failures caused by

interactions of parameters. However, most work on CT has

primarily focused on detecting failures. Little work has been

reported that provides support for identifying failure-inducing

combinations, i.e., combinations that cause the failures that are

detected by CT [2].

Generally, when a test case with a configuration failed

during the system testing, there are 2
n
 – 1 (n is the number of

parameters of the configuration) possible combinations that

may cause this failure. Identifying which specific combinations

that constitutes to failure-inducing combinations is an

important problem in that these combinations can help to

reduce the scope of the code that needs to be inspected to locate

the actual fault.

Recently, several methods have been proposed that attempt

to identify failure-inducing combinations. However, there is

much room left to be improved in handling the following two

major aspects: 1. Identifying multiple combinations which

overlap with each other. 2. Identifying additional failure-

inducing combinations that are introduced by newly generated

test configurations.

 To identify the failure-inducing combinations in a failing

test configuration, we proposed an approach based on the

notion of a tuple relationship tree (TRT). In our approach, we

first generate a tree structure to capture the relationship

between different combinations in a failing test configuration.

Then we select an unknown combination that has yet to be

determined whether it is a failure-inducing combination. After

a combination has been selected, we analyze it to confirm if it

is a failure-inducing combination. This is followed by

progressive checks on other related combinations. This process

continues until no other unknown combination could be found.

As we know, the TRT provide a clear view of all possible

interactions in a failing test configuration. As a result, our

approach will not omit any possible combination that may

induce the cause of a failure. In particular, we can identify

multiple failure-inducing combinations that overlap with each

other. Our approach is shown to be efficient, which requires

only a few number of extra test configurations to identify

failure-inducing combinations. The efficiency of our approach

lies in the combination selecting strategy, i.e., the order of

selecting the unknown combination from the remaining

unknown combinations. The main idea behind our selecting

strategy is the following: 1. Greedy step: we select a sequence

of closely related unknown combinations from the remaining

unknown combinations and sort them according to their

relationships with each other. Generally, there is more than one

such sequence. As such, we will select the one with the

maximum number of combinations for that we can determine

the combinations as much as possible in the iteration. 2. Search

step: for the sequence we select in the first step, we use binary

search to find the combination in the sequence as the one to be

analyzed for this turn. Since the combinations in the sequence

are closely related and sorted according to their relationships

with each other, we can largely reduce the number of extra test

configurations needed to identify the failure-inducing

combinations through the use of binary search technique.

Furthermore, we proposed an augmented version of our

approach which reinforces the process of determining a

combination to see if it is a failure-inducing combination. Such

an improvement provides a preliminary solution to handle the

case where additional failure-inducing combinations may be

introduced by newly generated test configurations.

Contribution of this paper: 1) We propose a new

approach to identifying the failure-inducing combinations in a

failing test configuration; 2) Our approach can identify multiple,

overlapping combinations; 3) The augmented version of our

approach can handle the case where additional failure-inducing

combinations may be introduced by newly generated test

configurations.

The rest of this paper is organized as follows: Section 2

introduces some preliminary definitions and propositions.

Section 3 describes our model for identifying failure-inducing

combinations. Section 4 presents our experimental results.

Section 5 summarizes related work. Section 6 provides

concluding remarks and discusses the future work.

II. PRELIMINARY

Assume that the SUT (software under test) has n parameters,

and each parameter ci has ai discrete values from the finite set

Vi, i.e., ai = |Vi|(i = 1,2,..n). Some of the definitions and

propositions below are originally defined in [3].

Definition 1 A test configuration is an array of n values,

one for each parameter of the SUT, which is denoted as (v1,

v2… vn), where v1∈V1, v2∈V2… vn∈Vn.

For example, consider a web application which may be

influenced by various aspects including operating system,

network bandwidth, browser and codec. We list the possible

values of each parameter in Table I. Then (Mac OS, 50M,

Chrome, AC-3 ACM) is a test configuration for the application.

TABLE I. PARAMETER VALUES OF THE WEB APPLICATION

OS Bandwidth Browser Codec

Windows 50M Chrome AC3Filter

Mac OS 200M FireFox MPEG Layer-3

Ubuntu 1G Opera AC-3 ACM

Definition 2 A tuple is also an array of some values, one

for a parameter of the SUT. We denote a tuple as [-,…, vn1 ,-

,…vnk ,…] which means the tuple consists of k values that

comes from the parameter cn1 ,cn2 ,…cnk of the SUT, and the ‘-

’ means the excluded corresponding parameter value. We

called the number of values in a tuple the size of the tuple. We

also call a tuple of size k the k-size tuple. The tuple is also

known as the combination mentioned before.

For example, [Mac OS, 50 M, -, -] is a 2-size tuple for the

web application.

Definition 3 A tuple is called a faulty tuple, when every

possible test configuration containing this tuple results in a

failure. And a tuple is called a healthy tuple when we find at

least one passed test configuration that contains this tuple.

For example, if [Mac OS , 50 M , -, -] is a faulty tuple, then

all the test configurations containing it, such as (Mac OS , 50

M , Chrome, AC-3 ACM), (Mac OS , 50 M , Firefox,

AC3Filter), will fail. Conversely, if there is at least one of these

test configurations that passes, [Mac OS, 50 M, -, -] is labeled

as a healthy tuple.

Definition 4 For two tuples A and B, if every parameter

value in A are also in B, and the size of A is less than B, then

we called A the child of B, and B the parent of A.

Furthermore, if the size of A is exactly one less than B, then

the relationship between A and B are direct.

For example [Mac OS, 50 M, Chrome, -] is the parent of [-,

50M, -, -], and [Mac OS, 50 M, Chrome, -] is the direct parent

of [Mac OS, 50 M, -, -].

Definition 5 If a tuple is a faulty tuple and all its child

tuples are healthy tuples, we then call the tuple a minimal faulty

tuple.

Identifying minimal faulty tuples can facilitate debugging

effort, as it can reduce the scope of the code that needs to be

inspected.

A. Propositions

We list four propositions. Due to space limitation, we will

skip the proofs of these propositions as they are pretty

straightforward.

Proposition 1 All the tuples in a passed test configuration

are healthy tuples.

Proposition 2 If ta is the parent of tb , tb is the parent of tc ,

then ta is the parent of tc.

Proposition 3 All the parent tuples of a faulty tuple are

faulty tuples.

Proposition 4 All the child tuples of a healthy tuple are

healthy tuples.

Note: these definitions and propositions give us an ideal

framework to identify the minimal faulty tuple, which assume

that the SUT is deterministic software and a test configuration

contains a faulty tuple must result in a failure during testing.

III. FAILURE-INDUCING COMBINATIONS IDENTIFYING MODEL

We will introduce our failure-inducing identifying model

with an example SUT. The SUT consists of 4 parameters, each

having 3 values. We generated a 2-way covering array to test

this SUT. The 2-way covering array and the test results are

listed in Table II.

TABLE II. EXECUTED TEST CONFIGURATIONS

No. Test configuration Result

1 1 1 1 1 Pass

2 1 2 2 2 Pass

3 1 3 3 3 Pass

4 2 1 2 3 Pass

5 2 2 3 1 Fail

6 2 3 1 2 Pass

7 3 1 3 2 Pass

8 3 2 1 3 Pass

No. Test configuration Result

9 3 3 2 1 Pass

A. Constructing TRT

First, we construct a TRT for a failing test configuration. A

TRT is a tree in which each node represents a tuple in the

failing test configuration and each edge represents a direct

parent and child relation from one node to another node.

For instance, for the failing configuration (2, 2, 3, 1) in

Table II, the TRT is shown in figure 1.

Fig. 1. TRT for (2,2,3,1)

B. Initial known tuples

In fact, some tuples in a TRT can be easily determined to be

faulty tuple or healthy tuple from the results of the executed

test configurations. Thus we do not need to generate extra test

configurations to analyze them. We can determine the type of a

tuple using static review as follows:

First, the root tuple in a TRT must be a faulty tuple. This is

because all the possible test configurations contain the root

tuple is original configuration, which failed during testing. So it

is a faulty tuple by definition. We mark the root tuple as a

faulty tuple. Second, tuples that appear in one or more passed

test configurations are healthy tuples by definition. We mark

such tuples as healthy tuples.

After the above steps, the TRT evolves as shown in Figure

2, where dark nodes represent faulty tuples, grey nodes

represent healthy tuples, and white nodes represent unknown

tuples.

Fig. 2. TRT after initial process

C. Identifying process

Having derived the TRT, there still remain many unknown

tuples. We need to determine which class they belong to

respectively, i.e., (faulty tuple or healthy tuple) to identify the

minimal faulty tuples. We will make the following assumption

to facilitate the process of determining unknown tuples in the

TRT:

Assumption: The generated extra test configuration will

not introduce new faulty tuples. (This assumption may not

always be true. This will be discussed further in the next

section.)

Based on this assumption, we will get the following lemma.

Lemma 1: For a tuple, we generate an extra test

configuration that contains this tuple. If the extra test

configuration passes, then this tuple is a healthy tuple. If the

extra test configuration fails, then the tuple is a faulty tuple.

Proof. According to Definition 2, it is obvious that this

tuple is a healthy tuple when the extra test configuration passes.

When the extra configuration fails, this is a faulty tuple (or

there exists no faulty tuple and this test configuration would not

fail because the assumption says that this extra configuration

will not introduce new faulty tuples). ▌
With this lemma, the process of determining all the

unknown tuples is also very straightforward that we will just

take the followed example to illustrate it. Consider the TRT in

Fig 2. the remaining unknown tuples are: [2,2,3,-],[2,2,-,1],[2,-

,3,1],[-,2,3,1],[2,2,-,-],[2,-,3,-],[2,-,-,1], [-,2,3,-],[-,2,-,1],[-,-,3,1].

We first select the tuple [2,2,3,-] to be analyzed (the order in

which tuples are selected from the remaining unknown tuples

will be discussed later). We generate an extra test configuration

(2,2,3,2) for the tuple [2,2,3,-]. Let’s assume that this test fails

during testing, which we subsequently label this tuple as a

faulty tuple. We also label all its parent tuples to be faulty

tuples. However, it has only one parent tuple in the TRT, which

is [2,2,3,1] and has been labeled to be a faulty tuple in the

initial step. So we skip this step. Next we select the tuple [2,2,-

,-], and find this tuple is a healthy tuple after we generate a test

configuration (2,2,1,2) which is assumed to pass during testing.

We also label all its child tuples to be healthy tuples. This

process continues until there are no unknown tuples.

TABLE III. IDENTIFYING EXAMPLE

Iterat

ion
Selected tuple Extra Test Result Additional tuples

1 [2,2,3,-] (2,2,3,2) faulty -

2 [2,2,-,-] (2,2,1,2) healthy -

3 [2,2,-,1] (2,2,1,1) healthy [2,-,-,1], [-,2,-,1]

4 [2,-,3,1] (2,1,3,1) faulty -

5 [2,-,3,-] (2,1,3,2) faulty -

6 [-,2,3,1] (1,2,3,1) faulty -

7 [-,2,3,-] (1,2,3,2) healthy -

8 [-,-,3,1] (1,1,3,1) healthy -

The details of our selection process are listed in table III.

Column “Selected tuple” shows the tuple selected for this

iteration, column “Extra Test” shows the extra test

configuration that contains the selected tuple. Column “Result”

shows our analysis result, i.e., whether the selected tuple is a

healthy or faulty tuple. The last column “Additional tuples”

shows the additional parent or child tuples of this selected tuple

which can be determined according to Propositions 3 and 4.

Fig. 3. TRT after identifying process

2 2 3 1

2 2 3 - 2 2 - 1 2 - 3 1 - 2 3 1

2 2 - - 2 - 3 - 2 - - 1 - 2 3 - - 2 - 1 - - 3 1

2 - - - - 2 - - - - 3 - - - - 1

2 2 3 1

2 2 3 - 2 2 - 1 2 - 3 1 - 2 3 1

2 2 - - 2 - 3 - 2 - - 1 - 2 3 - - 2 - 1 - - 3 1

2 - - - - 2 - - - - 3 - - - - 1

2 2 3 1

2 2 3 - 2 2 - 1 2 - 3 1 - 2 3 1

2 2 - - 2 - 3 - 2 - - 1 - 2 3 - - 2 - 1 - - 3 1

2 - - - - 2 - - - - 3 - - - - 1

Figure 3 shows the updated TRT. As all the unknown

tuples in the TRT are determined, we can easily find the

minimal faulty tuples according to Definition 4, i.e. [2,-,3,-]

and [-,2,3,1].

D. Tuple Selection strategy

It is important to note that the selection of an unknown

tuple from the remaining unknown tuples has a significant

impact on the efficiency of our approach. This is particularly so

when there are still many unknown tuples to be analyzed in the

TRT. Our selection strategy aims at minimizing the number of

extra test configurations. Before we describe this strategy, we

present the following definitions:

Definition 6 A path is a sequence of tuples in a TRT in

which every tuple is the direct parent of the tuple that follows.

For example, [2,2,3,1]→[2,2,3,-]→[2,-,3,-]→[2,-,-,-] is a path.

Moreover, a path is said to be an unknown path if every

tuple in this path is an unknown tuple. A path is said to be the

longest unknown path when this path is an unknown path that

has the maximum number of tuples in the TRT.

The selection strategy is described in Algorithm 1. In this

algorithm, variable lastChosen represents the last chosen tuple,

while the currentPath stores a path of the TRT. The variables

head, middle, and tail are the indexes of the tuples in

currentPath. All these variables are member variables owned

by the TRT.

Our selecting strategy has two main steps: Greedy step and

binary search step. For the first step, we will choose a longest

unknown path from the TRT. The idea behind this step is to

enable us to determine as many unknown tuples as possible.

There are two conditions that we need to apply in order to

determine the longest unknown path, i.e., reset the currentPath

(line 9): 1) The last chosen tuple is null, which means our

select function is invoked for the first time; 2) The index head

is greater than tail, which means that all the tuples in the

current path have been determined. After getting a new longest

unknown path (line 9), our select function let head point to the

first tuple of path and tail point to the last tuple of path (line 10

~11). Furthermore, we let the middle index point to the first

tuple of path (line 10). The reason why we first let the middle

point to the first tuple of the path is that we can determine as

soon as possible if the path has faulty tuples. For example,

consider a path [1,1,1,1,-]→[1,1,1,-,-]→[-,1,1,-,-]→[-,1,-,-,-]. We

first let middle point to [1,1,1,1,-]. If it is a healthy tuple, then

we immediately determine that there are no faulty tuples in this

path.

For the second main step, we choose binary search to get a

tuple to be tested from the currentPath. As we know, the tuples

in the currentPath is sorted according to their relationships, i.e.,

every tuple is the direct parent of the tuple that follows. Such

that if we have determined one tuple in the path, the tuples

before this selected tuple or after this selected tuple will also be

determined. So we use binary search to choose this tuple so that

we can minimize the number of extra test configurations (O

(log2 n)) that is used to determine all the tuples in the

currentPath. The details are as follow: we first determine if the

last chosen tuple is null (line 2). If not, we change the index of

tail or head to ensure the tuples between tail and head are all

unknown tuples. When the last tuple is a healthy tuple, all the

subsequent tuples are healthy tuples. Thus the process will let

tail point to the tuple before middle (line 3 ~ 4). If the last tuple

is a faulty tuple, then the tuples before it are faulty tuples. So

the process will let the head point to the tuple after the middle

(line 5 ~ 6). Based on the binary search method, set the middle

index to point to the middle tuple that is between the tail and

head (line 7). At the end, we return the tuple which middle

points to in the currentPath and set it to be the last chosen tuple

for the next iteration (lines 12~13).

 Algorithm 1 select strategy

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

define select():

 if lastChosen != null:

 if lastChosen.isHealthy:

 tail = middle – 1

 elseif lastChosen.isFaulty:

 head = middle+1

 middle = (head + tail)/2

 if lastChosen == null || tail < head:

 currentPath = get_longest_path()

 head = middle = 0

 tail = currentPath.size – 1

lastChosen = currentPath[middle]

return lastChosen

The following example shows how our strategy works:

Assume that we have a failing configuration (1, 1, 1, 1, 1, 1,

1, 1). Also assume that we do not have any information about

other test configurations. We construct the TRT for this

configuration, and initialize the root tuple to be a faulty tuple.

Next, our selection process starts. We get a longest

unknown path first:

[1 , 1 , 1 , 1 , 1 , 1 , 1 , -]→[1 , 1 , 1 , 1 , 1 , 1 , - , -]→[1 ,

1 , 1 , 1 , 1 , - , - , -]→[1 , 1 , 1 , 1 , - , - , - , -]→[1 , 1 , 1 , - , - ,

- , - , -]→[1 , 1 , - , - , - , - , - , -]→[1 , - , - , - , - , - , - , -].

And then we choose the first tuple: [1 , 1 , 1 , 1 , 1 , 1 , 1 , -

] to be analyzed. We generated an extra test configuration (1 ,

1 , 1 , 1 , 1 , 1 , 1 , 0), which is assumed to fail. So we label this

tuple to be a faulty tuple. We also label all its parent tuples to

be faulty tuples. For this particular tuple, the only parent tuple

is the root tuple [1 , 1 , 1 , 1 , 1 , 1 , 1 , 1], which is already

labeled to be a faulty tuple.

As the last chosen tuple is a faulty tuple, then we select the

tuple [1 , 1 , 1 , 1 , - , - , - , -], We generate an extra

configuration (1 , 1 , 1 , 1 , 0 , 0 , 0 , 0), which is assumed to

pass. We label this tuple and all its child tuples to be healthy

tuples, which include the following tuples: [1 , 1 , 1 , - , - , - , - ,

-] , [1 , 1 , - , - , - , - , - , -] ,[1 , - , - , - , - , - , - , -] in the path.

The next tuple chosen is [1 , 1 , 1 , 1 , 1 , 1 , - , -]. As the

last chosen tuple is a healthy tuple. It is also determined to be a

healthy tuple. We label this tuple and all its child tuples to be

healthy tuples (including the last unknown tuple in this path:

[1 , 1 , 1 , 1 , 1 , - , - , -]). As all the tuples in the path are

determined, we get a new longest unknown path. If there are

more than one longest unknown path, we select one of them

arbitrarily. In this example, we get the following longest

unknown path:

[1 , 1 , 1 , 1 , 1 , - , 1 , 1]→[1 , 1 , 1 , 1 , 1 , - , 1 , -]→[1 ,

1 , 1 , 1 , - , - , 1 , -]→[1 , 1 , 1 , - , - , - , 1 , -]→[1 , 1 , - , - , - ,

- , 1 , -]→[1 , - , - , - , - , - , 1 , -]→[- , - , - , - , - , - , 1 , -].

We repeat the above process until all the tuples in the TRT

are all determined. Our complete process for this example is

listed in table IV. At the end of this process, we find the

minimal faulty tuple is the tuple [1 , - , - , - , - , - , 1 , -].

TABLE IV. SELECTING EXAMPLE

Path

[1 , 1 , 1 , 1 , 1 , 1 , 1 , -]→[1 , 1 , 1 , 1 , 1 , 1 , - , -]→[1 ,

1 , 1 , 1 , 1 , - , - , -]→[1 , 1 , 1 , 1 , - , - , - , -]→[1 , 1 , 1 ,
- , - , - , - , -]→[1 , 1 , - , - , - , - , - , -]→[1 , - , - , - , - , - ,

- , -].

No. Selecting tuple Result

1 [1 , 1 , 1 , 1 , 1 , 1 , 1 , -] Faulty

2 [1 , 1 , 1 , 1 , - , - , - , -] Healthy

3 [1 , 1 , 1 , 1 , 1 , 1 , - , -] Healthy

Path

[1 , 1 , 1 , 1 , 1 , - , 1 , 1]→[1 , 1 , 1 , 1 , 1 , - , 1 , -]→[1 ,

1 , 1 , 1 , - , - , 1 , -]→[1 , 1 , 1 , - , - , - , 1 , -]→[1 , 1 , - ,
- , - , - , 1 , -]→[1 , - , - , - , - , - , 1 , -]→[- , - , - , - , - , - ,

1 , -].

No. Selecting tuple Result

4 [1 , 1 , 1 , 1 , 1 , - , 1 , 1] Faulty

5 [1 , 1 , 1 , - , - , - , 1 , -] Faulty

6 [1 , - , - , - , - , - , 1 , -] Faulty

7 [- , - , - , - , - , - , 1 , -] Healthy

Path

[1 , 1 , 1 , 1 , 1 , 1 , - , 1]→[1 , 1 , 1 , 1 , 1 , - , - , 1]→[1 ,

1 , 1 , 1 , - , - , - , 1]→[1 , 1 , 1 , - , - , - , - , 1] →[1 , 1 , - ,

- , - , - , - , 1]→[1 , - , - , - , - , - , - , 1]→[-, - , - , - , - , - , -
 , 1]

No. Selecting tuple Result

8 [1 , 1 , 1 , 1 , 1 , 1 , - , 1] Healthy

Path

[- , 1 , 1 , 1 , 1 , 1 , 1 , 1]→[- , 1 , 1 , 1 , 1 , 1 , 1 , -]→[- ,

1 , 1 , 1 , 1 , - , 1 , -]→[- , 1 , 1 , 1 , - , - , 1 , -]→[- , 1 , 1 ,
- , - , - , 1 , -]→[- , 1 , - , - , - , - , 1 , -]

No. Selecting tuple Result

9 [- , 1 , 1 , 1 , 1 , 1 , 1 , 1] Healthy

E. Removal of the assumption

By far our identifying process is based on the fundamental

assumption that the generated extra test configuration will not

introduce new faulty tuples. Since this assumption is not

always true, we present a preliminary solution to eradicate such

an assumption in this section. For ease of reference, we refer to

the assumption as “TRT assumption”.

As we know, in our previously approach, we just use one

extra test configuration to test the selected tuple. We can see

that if the extra test configuration passes, this tuple is surely a

healthy tuple, but if it fails, this tuple is not deterministic a

faulty tuple. This is because based on definition only when we

make sure every possible test configurations which contain the

selected tuple will fail can we determine this tuple is a faulty

tuple. However, having an exhaustive testing of all these test

configurations is too costly and not practical. So we should

make a tradeoff by restricting the number of extra test

configurations for determining a faulty tuple. It is obviously

that the more the number of test configurations for determining

a faulty tuple, the higher probability that a tuple may be faulty,

which lead to higher cost in identifying failure-inducing tuples.

In the extreme case, a tuple is deterministic to be a faulty tuple

when this value is equal to the number of the possible test

configurations contain this tuple. Conversely, the less the

number of test configurations for determining a faulty tuple, the

less probability that this tuple is a faulty tuple, which leads to

less cost needed to identify failure-inducing tuples. Notably,

the extreme case of this situation is that we only take one extra

test configuration to determine a faulty tuple, which turns into

our previously algorithm. Due to space limitation, we will not

discuss how to determine the best number of test configurations

for a SUT to determine a faulty tuple in this paper.

Our augmented approach without the TRT assumption is

shown in Algorithm 2. Similar to the algorithm with the TRT

assumption in place, this approach also needs to determine

whether there exists any tuple which is still unknown in the

TRT (line 2), select a tuple from the unknown tuples (line 3),

generate and execute an extra test configuration that contains

this tuple (line 5 ~6). The difference is that this approach uses

two new variables: num_needed and tempSuite. The former

indicates the number of extra test configurations needed to

determine a faulty tuple and the latter records the failing extra

test configurations generated for the current tuple that need to

be analyzed.

 If the current extra test configuration fails (line 7), we add

this test configuration in the tempSuite (line 8). Then we will

evaluate whether the number of test configurations in tempSuite

is less than num_needed. If so, generate a new test

configuration and execute it for the next iteration (line 10~11).

Otherwise, we break the loop (line 13). If the number of test

configurations in the tempSuite is less than num_needed ,

which means that this tuple is a healthy tuple, we will set this

tuple and all its child tuples to be healthy tuples (line 15 ~17).

Furthermore, although the tuple may be considered as a healthy

tuple, some extra test configurations recorded in the tempSuite

may fail during testing. As a result, it indicate that these test

configurations introduced new faulty tuples (otherwise, there

will exist no faulty tuple, and these test configurations would

pass). We recursively use this approach to analyze the failing

test configurations in the tempSuite to find these introduced

failure-inducing tuples (line 18~19). If the number of test

configurations in tempSuite is greater than num_needed, which

means that this tuple is a faulty tuple, we will set this tuple and

all its parent tuples to be faulty tuples (line 21 ~23).

 We present a simple example to show how our

identification approach without TRT assumption works:

For a failing test configuration (1,1,1), let num_needed = 3.

We first consider the tuple [1,1,-]. We generate a test

configuration (1,1,2), which is assumed to fail. We continue to

generate another test configuration (1,1,3), which is also

assumed to fail. As the number of test configurations in

tempSuite is still less than num_needed, so we continue to

generate the next test configuration (1,1,4), and assume that it

fails again. Now the number of test configurations in tempSuite

is 3, which is equal to num_needed. This means that this tuple

is a faulty tuple. We repeat our process until there are no

unknown tuples in the TRT.

 It is important to note that when the tuple is evaluated to be

a healthy tuple, but some extra test configurations containing

this tuple fail during testing, we should recursively identify

these extra test configurations to find new failure-inducing

tuples. For example, when we analyze the tuple [1,-,1],we

generate two configurations (1,2,1), (1,3,1). Assume that the

former fails and the later passes. As (1,3,1) passes, [1,-,1] is a

healthy tuple, and then we should recursively analyze

configuration (1,2,1) to find new failure-inducing tuples.

Our complete identifying process is listed in table V. The

minimal faulty tuples are [1,1,-],[-2,1],[2,1,-] and [3,1,-].

TABLE V. WITHOUT TRT ASSUMPTION EXAMPLE

test configuration (1,1,1)

No. Tuple Select Generate Configurations

1 [1,1,-] (1,1,2) fail (1,1,3) fail (1,1,4) fail

2 [1,-,-] (1,2,2) pass - -

3 [1,-,1] (1,2,1) fail (1,3,1) pass -

4 [-,1,1] (2,1,1) fail (3,1,1) fail (4,1,1) pass

test configuration (1,2,1)

No. Tuple Select Generate Configurations

5 [-,2,1] (2,2,1) fail (3,2,1) fail (4,2,1) fail

test configuration (2,1,1)

No. Tuple Select Generate Configurations

6 [2,1,-] (2,1,2) fail (2,1,3) fail (2,1,4) fail

7 [2,-,-] (2,2,2) pass - -

8 [2,-,1] (2,3,1) pass - -

test configuration (3,1,1)

No. Tuple Select Generate Configurations

9 [3,1,-] (2,2,1) fail (3,2,1) fail (4,2,1) fail

10 [3,-,-] (3,2,2) pass - -

11 [3,-,1] (3,3,1) pass - -

IV. EVALUATION

The goal of this section is to assess the performance of our

appoach. Specifically, we present several experiments that are

designed to answer the following questions:

Q1. Is our approach efficient compared with existing

methods?

Q2. How effective does our approach deal with the

overlapping faulty tuple?

Q3. How well does our approach deal with the newly

introduced failure-inducing tuples?

Q4. Can our approach identify the failure-inducing

combinations in the real software?

In the following experiments, we compare to an existing

method, namely FIC_BS, which is stated to perform the best

among the existing methods [4]. We set the variable

num_needed of Algorithm 2 to 3.

A. Comparison with existing methods

To compare with method FIC_BS, we used five SUTs as

our experimental subjects. The numbers of the parameters for

these SUTs are 8, 9, 10, 11, and 12 respectively. For each SUT

we conducted the following two groups of experiments:

1) In the first group of experiments, we assume that a

failing test configuration of a SUT only contains a single t-size

(t = 2, 3, 4) faulty tuple.

 For example, the failing test configuration (1, 2, 2, 2, 1, 1,

2, 3) of the first SUT only contains a faulty tuple [1,2,-,-,-,-,-,-],

other tuples in this configuration are healthy tuples. In fact,

there are tCm
(m = 8, 9, 10, 11, 12; t = 2, 3, 4) possible tuples of

this kind in a failing configuration.

When embedding a single faulty tuple in a SUT, e.g.,

embedding a faulty tuple [1,1,-,-,-,-,-,-] in the first SUT, we

give a failing test configuration as the input to the algorithm,

for example: (1,1,1,1,1,1,1,1). To be fair, we do not give any

information about other test configurations. Then we identify

the embedded faulty tuple in the failing test configuration with

our approach with TRT assumption (labeled as PATH), our

augmented approach without TRT assumption (labeled as

PATH _NA) and FIC_BS respectively. We record the extra test

configurations they generated through the process of

identifying the embedded faulty tuple.

We successively change the single faulty tuple embedded in

the SUT from the tCm
 tuples and record the extra test

configurations generated by the three algorithms in each

iteration. Table VI lists the average extra configurations that

have to be executed by each algorithm in the column titled

“Average extra test configurations”.

In addition to the average extra test configurations, there is

another factor to check: the number of tuples in the TRT that

are determined by each approach. Our two approaches—PATH

and PATH_NA determined all the tuples in the TRT, but this is

not the case for the FIC_BS. We should compute the number of

the tuples in the TRT that are determined by FIC_BS. We list

Algorithm 2 Identifying process without TRT assumption

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

define identify_NA(TRT):

 while TRT.unknown_tuples != ∅:

 tuple = TRT.select(unknown_tuples)

 tempSuite = []

 test_config = gen_extra(tuple)

 result = exec(test_config)

 while result == fail :

 tempSuite.append(test_config)

 if numberOf(tempSuite) < num_needed :

test_config = gen_extra(tuple)

 result = exec(test_config)

 else :

 break

 if numberOf(tempSuite) < num_needed :

 TRT.set(tuple,healthy)

 for each_child of tuple:

 TRT.set(each_child, healthy)

 for each_test_config of tempSuite:

 identify_NA(TRT(each_test_config))

 else :

 TRT.set(tuple,faulty)

 for each_father of tuple:

 TRT.set(each_father, faulty)

the average covered number of tuples in TRT in the column

with name “Average covered tuples” of Table VI.

We measure the efficiency of a method using the result

obtained by dividing the number of extra test configurations by

the coverage of tuples in the TRT. Table VI lists the average

efficiency in the column with name “Efficiency”.

2) In the second group of experiments, we assume that a

failing test configuration of a SUT contains two t-size (t = 2, 3,

4) faulty tuples, and the two tuples do not overlap.

For example, assume that tuple (1, 2, 2, 2, 1, 1, 2, 3) of the

first SUT contains two faulty tuples: [1,2,-,-,-,-,-,-] and [-,-,-,2,-

,1,-,-]. These two tuples do not overlap.

When embedding two faulty tuples that do no overlap in a

SUT, we identify the two faulty tuples with three approaches.

As in the first group of experiments, we record the number of

generated extra configurations, covered tuples, and efficiency.

We then successively change the two faulty tuples having

no overlapped part embedded in the SUT. After running all the

cases, we list the average of extra configurations, covered

tuples and efficiency of each algorithm in table VII.

TABLE VI. COMPARING RESULT OF SINGLE FAULTY TUPLE

SUT t
Average extra test configurations Average covered tuples Efficiency

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS

1

2 10.8 23.8 9.0 255 255 163.3 23.7 10.7 18.2

3 12.4 25.7 12.0 255 255 140.4 20.5 9.9 11.5

4 12.7 23.9 14.9 255 255 147.5 20.1 10.7 9.7

2

2 11.3 24.7 9.6 511 511 318.8 45.1 20.7 33.2

3 13.7 27.9 12.9 511 511 263.8 37.4 18.3 20.0

4 14.9 28.8 16.1 511 511 269.8 34.3 17.7 16.4

3

2 11.8 26.2 9.9 1023 1023 624.6 86.7 39.0 63.1

3 14.2 29.4 13.3 1023 1023 500.0 72.0 34.8 36.8

4 16.0 31.4 16.7 1023 1023 498.4 64.0 32.5 29.0

4

2 13.2 30.1 10.3 2047 2047 1227.6 155.3 68.0 120.1

3 15.2 32.3 13.8 2047 2047 954.5 134.2 63.4 68.0

4 17.0 34.1 17.3 2047 2047 928.8 120.2 60.0 52.4

5

2 13.7 31.3 10.4 4095 4095 2419.2 299.6 130.7 232.4

3 16.7 36.2 14.1 4095 4095 1832.6 246.7 113.0 127.9

4 18.2 37.3 17.7 4095 4095 1743.6 225.0 109.7 96.0

TABLE VII. COMPARING RESULT OF TWO NON OVERLAPPING FAULTY TUPLES

SUT t
Average extra test configurations Average covered tuples Efficiency

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS

1

2 25.0 55.7 17.2 255 255 158.0 10.2 4.6 9.2

3 34.0 66.8 21.7 255 255 119.5 7.5 3.8 5.5

4 41.0 72.5 24.2 255 255 111.6 6.2 3.5 4.6

2

2 27.0 58.9 17.9 511 511 307.2 18.9 8.7 17.1

3 39.6 78.4 23.3 511 511 221.7 12.9 6.5 9.4

4 48.0 85.3 27.6 511 511 198.0 10.6 6.0 7.1

3

2 28.6 63.5 18.6 1023 1023 600.7 35.8 16.1 32.3

3 42.6 85.0 24.4 1023 1023 416.4 24.0 12.0 17.0

4 54.6 99.7 29.4 1023 1023 356.7 18.7 10.3 12.0

4

2 31.0 69.7 19.9 2047 2047 1179.5 65.9 29.4 59.6

3 46.1 93.7 25.5 2047 2047 790.2 44.4 21.8 30.9

4 59.1 110.2 31.0 2047 2047 651.4 34.6 18.6 20.8

5

2 34.0 77.7 20.3 4095 4095 2323.8 120.4 52.7 114.8

3 49.3 101.5 26.9 4095 4095 1512.2 83.1 40.4 56.0

4 63.5 120.5 32.1 4095 4095 1203.3 64.4 34.0 37.1

From the results in Table VI and Table VII, we get the

followed conclusions:

Firstly, we can observe that the efficiency of the approaches

(PATH, PATH_NA and FIC_BS) decreases with the increase

of t for each SUT. And the efficiency increases with the

increase of the size, i.e., the number of parameters, of SUT.

What’s more, comparing the results of Table VI and Table

VII, we can see the efficiency of identifying the failure-

inducing combinations of SUT with a single faulty tuple is

higher than those with two faulty tuples, which means that

more effort is needed to identify the additional faulty tuple in

the failing test configuration.

Thirdly, we can observe that although the algorithm—

FIC_BS needs smaller test configurations in most cases (there

exists some cases where the FIC_BS approach requires more

test configurations than our path approach, that is when t = 4,

SUT from 1to 4 in the Table VI). Note that such cases only

cover a small number of tuples in the TRT. As a result, the

efficiency of FIC_BS is poorer than our first approach—PATH

in all cases as shown in Table VI and Table VII.

Lastly, the efficiency of the augmented approach—

PATH_NA is poorer than PATH and FIC_BS. This is because

this approach needs more extra test configurations to determine

a tuple than the other two approaches, so that it can achieve

better performance under the condition when new faulty tuples

may be introduced in the generated test configurations.

B. Handling Overlapping faulty tuples

In the following experiments, we use the same SUTs in the

previous section. To see how well our approach handles the

case when a failing test configuration contains multiple faulty

tuples that overlap, we design the following experiment:

We assume that a failing test configuration contains two t-

size (t = 2, 3, 4) faulty tuples, and the two tuples overlap.

For example, (1, 2, 2, 2, 1, 1, 2, 3) contain two faulty tuples:

[1,2,2,-,-,-,-,-] and [-,-,2,2,-,1,-,-], the third parameter value of

the first tuple and the first parameter value are the same.

When embedding two overlapping faulty tuples in a SUT,

we identify the two embedded faulty tuples with the three

approaches. We also record their generated average extra

configurations, covered tuples in the TRT and the efficiency,

similar to the previous experiments. In addition, we record the

number of failure-inducing tuples that the three approaches

identified in the column titled “failure-inducing tuples

identified”.

We successively change the two different faulty tuples

embedded in the SUT. After running all the cases, we list the

average number of extra configurations, covered tuples,

efficiency and the number of identified failure-inducing tuples

of each algorithm in Table VIII.

TABLE VIII. COMPARING RESULT OF TWO OVERLAPPING FAULTY TUPLES

SUT t
Average extra test configurations Average covered tuples in TRT Efficiency failure-inducing tuples identified

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS

1

2 17.4 41.7 8.5 255 255 149.3 14.6 6.1 17.6 2 2 1

3 22.6 48.5 11.4 255 255 113.5 11.3 5.3 9.9 2 2 1

4 24.5 48.9 14.2 255 255 114.0 10.4 5.2 7.9 2 2 1

2

2 18.3 43.1 9.0 511 511 293.1 27.9 11.8 32.8 2 2 1

3 26.2 56.4 12.1 511 511 212.6 19.5 9.1 17.3 2 2 1

4 29.7 58.8 15.3 511 511 203.2 17.2 8.7 13.0 2 2 1

3

2 19.1 45.4 9.4 1023 1023 577.4 53.5 22.5 62.0 2 2 1

3 28.0 60.4 12.6 1023 1023 402.6 36.5 16.9 31.7 2 2 1

4 34.7 70.1 15.8 1023 1023 367.6 29.5 14.6 22.8 2 2 1

4

2 20.7 49.9 9.8 2047 2047 1140.6 98.9 41.0 118.0 2 2 1

3 30.4 66.5 13.1 2047 2047 769.1 67.3 30.8 58.2 2 2 1

4 38.6 78.6 16.5 2047 2047 673.9 53.1 26.1 40.1 2 2 1

5

2 22.4 54.5 10.0 4095 4095 2257.7 183.1 75.1 227.8 2 2 1

3 32.8 72.6 13.4 4095 4095 1480.0 124.7 56.4 109.4 2 2 1

4 42.1 86.7 16.9 4095 4095 1249.1 97.2 47.2 72.3 2 2 1

From the results in Table VIII, we find that our two

approaches identified all the two failure-inducing tuples with

overlap part while FIC_BS only found one faulty tuple of the

two failure-inducing tuples in all cases.

From the previous section, we knew that the efficiency of

identifying single faulty tuple is higher than identifying two

faulty tuples. Importantly, even though our approach identified

two faulty tuples while FIC_BS identified only one, our

approach, PATH, still manage to achieve higher efficiency than

FIC_BS in most cases (except the cases when t is 2).

Furthermore, compared with Table VII, we find the

efficiency of identifying the overlapping tuples is higher than

identifying the tuples that do not overlap. In other words, our

approaches have a better performance at identifying failure-

inducing tuples with overlapped part.

C. Handling newly introduced faulty tuples

We use the same five SUTs in the previous section. To see

how well our approach handles the case where the generated

extra test configurations could contain newly introduced

failure-inducing tuples, we design the following experiment:

We inject two faulty tuples in the SUT. One must be

contained in the test configuration under analysis; another must

not be exist in the test configuration.

For example: for the test configuration (1, 1, 1, 1, 1, 1, 1, 1)

of the first SUT, we inject a faulty tuple [1,1,-,-,-,-,-,-] which is

contained in this test configuration, and another faulty tuple [-

,2,2,-,-,-,-,-] which is not contained in the test configuration.

We use two-level, nested loops to generate two faulty

tuples and identify them using three approaches. The first level

layer loop is to successively select a t-size (t = 2,3,4) faulty

tuple from the test configuration under analysis. In the second

level loop, we first generate a random test configuration which

is different from the original test configuration at each

parameter, say, (3,2,2,2,3,2,2,3), and then successive select a 2-

way faulty tuple from the newly generated test configuration.

After two tuples are embedded in the SUT, we identify them

using the three approaches, and then record the number of

correctly identified faulty tuples which is contained in the test

configuration. In addition, we recorded the number of newly

introduced faulty tuples identified and the incorrectly identified

faulty tuples, which are neither the first embedded faulty tuple

nor the second embedded faulty tuple.

Table IX shows, for each approach, the total number of

correctly identified faulty tuples, the total number of newly

introduced faulty tuples identified and the total number of the

incorrectly identified faulty tuples in columns named “correctly

Identified tuples”,” new imported faulty tuples Identified” and

“incorrectly Identified tuples”, respectively.

TABLE IX. RESULT OF IDENTIFYING NEW IMPORTED FAILURE-INDUCING TUPLE

SUT t

correctly Identified tuples new imported faulty tuples Identified incorrectly Identified tuples

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS
PAT

H
PATH _NA FIC_BS

1

2 601 784 364 0 241 0 364 0 420

3 1173 1568 728 0 618 0 478 0 840

4 1736 1960 1260 0 297 0 245 0 700

2

2 1170 1296 1080 0 189 0 190 0 216

3 2720 3024 2520 0 478 0 362 0 504

4 3190 4536 1890 0 2396 0 1607 0 2646

3

2 1777 2025 1575 0 410 0 495 0 450

3 4182 5400 2880 0 2053 0 1625 0 2520

4 7569 9450 6300 0 3350 0 2156 0 3150

4

2 2688 3025 2475 0 710 0 913 0 550

3 6691 9075 4455 0 4194 0 4455 0 4620

4 12363 18150 8910 0 11466 0 7635 0 9240

5

2 3579 4356 2970 0 1252 0 1255 0 1386

3 10663 14520 8360 0 7119 0 5298 0 6160

4 23943 32670 18810 0 22370 0
1422

5
0 13860

The results in Table IX suggest that only our approach—

PATH_NA can identify the newly introduced failure-inducing

tuples. Furthermore, only PATH _NA did not identify faulty

tuples incorrectly, which means that this approach is not

affected by the newly introduced faulty tuples, while the other

two approaches: PATH and FIC_BS are affected by the newly

introduced faulty tuples.

D. Handling failure-inducing combinations in real software

We used a module of the Traffic Collision Avoidance

System (TCAS) benchmark as our real software testing subject

(available at [14]), The module is part of a set of C programs

that has been used in other evaluations of software testing

methods [13], [15].

The program has 12 input parameters and one output

parameter. To make model checking feasible, we use the same

partitioned equivalence classes of each parameter as [15] ,We

can model this input configuration as SUT(3 , 2 , 2 , 2 , 2 , 2 ,

4 , 10, 10, 3, 2, 2).

We get 5 faulty versions of the TCAS by manually seeding

realistic faults into the correct version. And for a test

configuration, the testing result is determined by comparing the

executed result of the correct version and faulty version. We

induce a failing test configuration as the input of each

algorithm, and make analysis of the results obtained.

Before testing, we manually identify the actually failure-

inducing combinations of each incorrectly version of TCAS

through code inspection, which are those combinations of input

configurations which will make the result of the corresponding

incorrectly version of TCAS differ from the correct version.

The result is listed in table X.The column with the field

name ”Version” means the faulty verstion of the TCAS, and

column “All” shows the actually number of failure-inducing

combinations in this version of TCAS. The remaining columns

show the results of each algorithm, the sub column with

name ”R” shows the number of correctly indentified failure-

inducing combintions, and the sub column ”W” shows the

number of incorrectly identified combinations.

TABLE X. RESULT OF IDENTIFIED REALISTIC FAILURE-INDUCING

COMBINATIONS IN REAL SOFTWARE

Version All
PATH PATH _NA FIC_BS

R W R W R W

1 2 2 0 2 0 1 0

2 2 1 1 2 0 1 0

3 1 1 0 1 0 1 0

4 3 0 1 3 0 1 0

5 4 2 0 2 0 0 1

Total 12 6 2 10 0 4 1

We find that our approach—PATH_NA get the best

performance in identifying the realistic failure-induce

combinations among the three approaches from table X.

V. RELATED WORKS

Nie’s approach in [3] and [6] first separates the faulty-

possible tuples and healthy-possible tuples into two sets.

Subsequently, by changing a parameter value at a time of the

original test configuration, this approach generates extra test

configurations. After executing the configurations, the

approach converges by reducing the number of tuples in the

faulty-possible sets.

Delta debugging [5] proposed by Zeller is an adaptive

divide–and-conquer approach to locating interaction fault. It is

very efficient and has been applied to real software

environment. Zhang et al. [4] also proposed a similar approach

that can identify the failure-inducing combinations that has no

overlapped part efficiently,

Colbourn and McClary [7] proposed a non-adaptive method.

Their approach extends the covering array to the locating array

to detect and locate interaction faults.

C. Martínez [8-9] proposed two adaptive algorithms. The

first one needs safe value as their assumption and the second

one remove the assumption when the number of values of each

parameter is equal to 2. Their algorithms focus on identifying

the faulty tuples that have no more than 2 parameters.

Ghandehari.etc [10] defines the suspiciousness of tuple and

suspiciousness of the environment of a tuple. Based on this,

they rank the possible tuples and generate the test

configurations. Although their approach imposes minimal

assumption, it does not ensure that the tuples ranked in the top

are the faulty tuples.

Yilmaz [11] proposed a machine learning method to

identify inducing combinations from a combinatorial testing set.

They construct a classified tree to analyze the covering arrays

and detect potential faulty combinations. Beside this, Fouché

[12] and Shakya [13] made some improvements in identifying

failure-inducing combinations based on Yilmaz’s work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new model to identify

failure-inducing combinations. It uses TRT to record all the

tuples under test and their relationships. Our approach can

identify the overlapping faulty tuples while at the same time

generating accurate results. The augmented approach—

PATH_NA can handle the newly introduced failure-inducing

tuples very well. Our approach exhibits very good efficiency

when identifying the faulty tuples in a failing test configuration.

However, our approach needs further improvement as it

uses large space to record the TRT (We need record 2
n
 nodes in

a TRT). We have done some improvement to largely reduce the

space needed to identify the minimal failure-inducing

combinations, which will be reported in our future publications.

Also the best number of extra test configurations needed to

determine a faulty tuple will be investigated as an important

part of our future work. Furthermore, we will apply our method

into more complex software environments (such as SOA

architecture software).

REFERENCES

[1] Kuhn, D. Richard, and Michael J. Reilly. "An investigation of
the applicability of design of experiments to software testing."
Software Engineering Workshop, 2002. Proceedings. 27th
Annual NASA Goddard/IEEE. IEEE, 2002.

[2] C. Nie and H. Leung, "A survey of combinatorial testing," ACM
Computing Surveys (CSUR), vol. 43, p. 11, 2011.

[3] C. Nie and H. Leung, "The minimal failure-causing schema of
combinatorial testing," ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, p. 15, 2011.

[4] Z. Zhang and J. Zhang, "Characterizing failure-causing
parameter interactions by adaptive testing," in Proceedings of
the 2011 International Symposium on Software Testing and
Analysis, 2011, pp. 331-341.

[5] A. Zeller and R. Hildebrandt, "Simplifying and isolating failure-
inducing input," Software Engineering, IEEE Transactions on,
vol. 28, pp. 183-200, 2002.

[6] Baowen, X., Changhai, N., Liang, S and Huo-Wang, C. "A
software failure debugging method based on combinatorial
design approach for testing." Chinese Journal of Computers,
29.1(2006), 132-138.

[7] C. J. Colbourn and D. W. McClary, "Locating and detecting
arrays for interaction faults," Journal of combinatorial
optimization, vol. 15, pp. 17-48, 2008.

[8] C. Martínez, et al., "Algorithms to locate errors using covering
arrays," LATIN 2008: Theoretical Informatics, 2008.

[9] C. Martínez, et al., "Locating errors using ELAs, covering arrays,
and adaptive testing algorithms," SIAM Journal on Discrete
Mathematics, vol. 23, p. 1776, 2009.

[10] L. S. G. Ghandehari, et al., "Identifying failure-inducing
combinations in a combinatorial test set," in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on, 2012, pp. 370-379."

[11] C. Yilmaz, et al., "Covering arrays for efficient fault
characterization in complex configuration spaces," Software
Engineering, IEEE Transactions on, vol. 32, pp. 20-34, 2006.

[12] S. Fouché, et al., "Incremental covering array failure
characterization in large configuration spaces," in Proceedings
of the eighteenth international symposium on Software testing
and analysis, 2009, pp. 177-188.

[13] K. Shakya, et al., "Isolating Failure-Inducing Combinations in
Combinatorial Testing using Test Augmentation and
Classification," in Proc. International Workshop on
Combinatorial Testing (CT 2012), ed. Montreal, Canada, 2012.

[14] Aristotle sample analysis programs. Available:
http://pleuma.cc.gatech.edu/aristotle/Tools/Demo/preDefSrc/tcas
/index.html

[15] D. R. Kuhn and V. Okum, "Pseudo-exhaustive testing for
software," in Software Engineering Workshop, 2006. SEW'06.
30th Annual IEEE/NASA, 2006, pp. 153-158.

http://pleuma.cc.gatech.edu/aristotle/Tools/Demo/preDefSrc/tcas/index.html
http://pleuma.cc.gatech.edu/aristotle/Tools/Demo/preDefSrc/tcas/index.html

